Damage-tolerant nanotwinned metals with nanovoids under radiation environments

نویسندگان

  • Y Chen
  • K Y Yu
  • Y Liu
  • S Shao
  • H Wang
  • M A Kirk
  • J Wang
  • X Zhang
چکیده

Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from high density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation, structural changes and damage evolution in nanotwinned copper under repeated frictional contact sliding

Nanotwinned metals have the potential for use as structural materials by virtue of having a combination of high strength as well as reasonable ductility and damage tolerance. In the current study, the tribological response of nanotwinned copper has been characterized under conditions of repeated frictional sliding contact with a conical tip diamond indenter. Pure ultrafine-grained copper specim...

متن کامل

Analysis of size-dependent slip transfer and inter-twin flow stress in a nanotwinned fcc metal

Nanotwinned structures offer the potential to effectively enhance strength while preserving ductility and damage tolerance. In this paper we present an analytical model for quantifying slip transfer across twin boundaries and for deriving the attendant flow stress as a function of the twin lamellae size in nanotwinned face-centered cubic metals. The mechanistic models investigate how single or ...

متن کامل

Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals

We have developed a mechanism-based plasticity model of nanotwinned metals to investigate the effect of twin spacing on strength, ductility and work hardening rate of such materials. In particular, the unique roles of dislocation pile-up zones near twin and grain boundaries, as well as twinning partial dislocations, in strengthening and work hardening are incorporated in the model. Competition ...

متن کامل

Indentation of nanotwinned fcc metals: Implications for nanotwin stability

Cyclic nanoand microindentation, along with indentation creep, were performed on nanotwinned Cu with two twin structures, and on nanotwinned Ag. The results provide evidence that nanotwinned face-centered cubic (fcc) structures are more stable than their nanocrystalline counterparts. The results are put in the important context of the available body of theoretical study of nanotwinned fcc metal...

متن کامل

Deformation mechanisms in nanotwinned metal nanopillars.

Nanotwinned metals are attractive in many applications because they simultaneously demonstrate high strength and high ductility, characteristics that are usually thought to be mutually exclusive. However, most nanotwinned metals are produced in polycrystalline forms and therefore contain randomly oriented twin and grain boundaries making it difficult to determine the origins of their useful mec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015